3.323 \(\int \frac{x^2}{a+b x^4+c x^8} \, dx\)

Optimal. Leaf size=315 \[ -\frac{\sqrt [4]{c} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} \sqrt{b^2-4 a c} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} \sqrt{b^2-4 a c} \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} \sqrt{b^2-4 a c} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}-\frac{\sqrt [4]{c} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} \sqrt{b^2-4 a c} \sqrt [4]{\sqrt{b^2-4 a c}-b}} \]

[Out]

-((c^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*Sqrt[b^2 - 4*a*c]*(-b - Sqrt[b
^2 - 4*a*c])^(1/4))) + (c^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*Sqrt[b^2
- 4*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) + (c^(1/4)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)
])/(2^(3/4)*Sqrt[b^2 - 4*a*c]*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) - (c^(1/4)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqr
t[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*Sqrt[b^2 - 4*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.289891, antiderivative size = 315, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {1375, 298, 205, 208} \[ -\frac{\sqrt [4]{c} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} \sqrt{b^2-4 a c} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} \sqrt{b^2-4 a c} \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{\sqrt [4]{c} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} \sqrt{b^2-4 a c} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}-\frac{\sqrt [4]{c} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} \sqrt{b^2-4 a c} \sqrt [4]{\sqrt{b^2-4 a c}-b}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(a + b*x^4 + c*x^8),x]

[Out]

-((c^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*Sqrt[b^2 - 4*a*c]*(-b - Sqrt[b
^2 - 4*a*c])^(1/4))) + (c^(1/4)*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*Sqrt[b^2
- 4*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) + (c^(1/4)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)
])/(2^(3/4)*Sqrt[b^2 - 4*a*c]*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) - (c^(1/4)*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqr
t[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*Sqrt[b^2 - 4*a*c]*(-b + Sqrt[b^2 - 4*a*c])^(1/4))

Rule 1375

Int[((d_.)*(x_))^(m_.)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]
}, Dist[c/q, Int[(d*x)^m/(b/2 - q/2 + c*x^n), x], x] - Dist[c/q, Int[(d*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; F
reeQ[{a, b, c, d, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^2}{a+b x^4+c x^8} \, dx &=\frac{c \int \frac{x^2}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx}{\sqrt{b^2-4 a c}}-\frac{c \int \frac{x^2}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx}{\sqrt{b^2-4 a c}}\\ &=\frac{\sqrt{c} \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{\sqrt{2} \sqrt{b^2-4 a c}}-\frac{\sqrt{c} \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{\sqrt{2} \sqrt{b^2-4 a c}}-\frac{\sqrt{c} \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{\sqrt{2} \sqrt{b^2-4 a c}}+\frac{\sqrt{c} \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{\sqrt{2} \sqrt{b^2-4 a c}}\\ &=-\frac{\sqrt [4]{c} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2^{3/4} \sqrt{b^2-4 a c} \sqrt [4]{-b-\sqrt{b^2-4 a c}}}+\frac{\sqrt [4]{c} \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2^{3/4} \sqrt{b^2-4 a c} \sqrt [4]{-b+\sqrt{b^2-4 a c}}}+\frac{\sqrt [4]{c} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2^{3/4} \sqrt{b^2-4 a c} \sqrt [4]{-b-\sqrt{b^2-4 a c}}}-\frac{\sqrt [4]{c} \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2^{3/4} \sqrt{b^2-4 a c} \sqrt [4]{-b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [C]  time = 0.0230013, size = 43, normalized size = 0.14 \[ \frac{1}{4} \text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\log (x-\text{$\#$1})}{2 \text{$\#$1}^5 c+\text{$\#$1} b}\& \right ] \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(a + b*x^4 + c*x^8),x]

[Out]

RootSum[a + b*#1^4 + c*#1^8 & , Log[x - #1]/(b*#1 + 2*c*#1^5) & ]/4

________________________________________________________________________________________

Maple [C]  time = 0.003, size = 43, normalized size = 0.1 \begin{align*}{\frac{1}{4}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{{{\it \_R}}^{2}\ln \left ( x-{\it \_R} \right ) }{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(c*x^8+b*x^4+a),x)

[Out]

1/4*sum(_R^2/(2*_R^7*c+_R^3*b)*ln(x-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{c x^{8} + b x^{4} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

integrate(x^2/(c*x^8 + b*x^4 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 2.29391, size = 5895, normalized size = 18.71 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

sqrt(sqrt(1/2)*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64
*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*arctan(-(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)*x*sqrt(sqrt(1/2)*sq
rt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4
 - 8*a^2*b^2*c + 16*a^3*c^2)))/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3) + sqrt(1/2)*(a*b^4 -
 8*a^2*b^2*c + 16*a^3*c^2)*sqrt(sqrt(1/2)*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*
b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*sqrt((2*c*x^2 - sqrt(1/2)*(b^3 - 4*
a*b*c + (a*b^6 - 12*a^2*b^4*c + 48*a^3*b^2*c^2 - 64*a^4*c^3)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64
*a^5*c^3))*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5
*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))/c)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3)) - s
qrt(sqrt(1/2)*sqrt(-(b + (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*
a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*arctan(-((a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)*x/sqrt(a^2*b^6 - 12
*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3) - sqrt(1/2)*(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)*sqrt((2*c*x^2 - sqrt(
1/2)*(b^3 - 4*a*b*c - (a*b^6 - 12*a^2*b^4*c + 48*a^3*b^2*c^2 - 64*a^4*c^3)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^
4*b^2*c^2 - 64*a^5*c^3))*sqrt(-(b + (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^
2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))/c)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64
*a^5*c^3))*sqrt(sqrt(1/2)*sqrt(-(b + (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b
^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))) - 1/4*sqrt(sqrt(1/2)*sqrt(-(b + (a*b^4 - 8*a^2*b^2
*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2
)))*log(1/2*sqrt(1/2)*(b^4 - 8*a*b^2*c + 16*a^2*c^2 - (a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3)/s
qrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))*sqrt(sqrt(1/2)*sqrt(-(b + (a*b^4 - 8*a^2*b^2*c + 16
*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*sqr
t(-(b + (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4
- 8*a^2*b^2*c + 16*a^3*c^2)) + c*x) + 1/4*sqrt(sqrt(1/2)*sqrt(-(b + (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^
2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*log(-1/2*sqrt(1/2)*(
b^4 - 8*a*b^2*c + 16*a^2*c^2 - (a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3)/sqrt(a^2*b^6 - 12*a^3*b^
4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))*sqrt(sqrt(1/2)*sqrt(-(b + (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6
- 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*sqrt(-(b + (a*b^4 - 8*a^2*
b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*
c^2)) + c*x) - 1/4*sqrt(sqrt(1/2)*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c +
48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*log(1/2*sqrt(1/2)*(b^4 - 8*a*b^2*c + 16*a^2
*c^2 + (a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 6
4*a^5*c^3))*sqrt(sqrt(1/2)*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*
b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt
(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)) + c*x) + 1/4*sqrt(
sqrt(1/2)*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*
c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*log(-1/2*sqrt(1/2)*(b^4 - 8*a*b^2*c + 16*a^2*c^2 + (a*b^7 - 12*a^2*
b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))*sqrt(sqrt(1
/2)*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3))/
(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)))*sqrt(-(b - (a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)/sqrt(a^2*b^6 - 12*a^3*b^4*c
 + 48*a^4*b^2*c^2 - 64*a^5*c^3))/(a*b^4 - 8*a^2*b^2*c + 16*a^3*c^2)) + c*x)

________________________________________________________________________________________

Sympy [A]  time = 3.49312, size = 172, normalized size = 0.55 \begin{align*} \operatorname{RootSum}{\left (t^{8} \left (16777216 a^{5} c^{4} - 16777216 a^{4} b^{2} c^{3} + 6291456 a^{3} b^{4} c^{2} - 1048576 a^{2} b^{6} c + 65536 a b^{8}\right ) + t^{4} \left (4096 a^{2} b c^{2} - 2048 a b^{3} c + 256 b^{5}\right ) + c, \left ( t \mapsto t \log{\left (x + \frac{1048576 t^{7} a^{4} b c^{3} - 786432 t^{7} a^{3} b^{3} c^{2} + 196608 t^{7} a^{2} b^{5} c - 16384 t^{7} a b^{7} - 512 t^{3} a^{2} c^{2} + 384 t^{3} a b^{2} c - 64 t^{3} b^{4}}{c} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(c*x**8+b*x**4+a),x)

[Out]

RootSum(_t**8*(16777216*a**5*c**4 - 16777216*a**4*b**2*c**3 + 6291456*a**3*b**4*c**2 - 1048576*a**2*b**6*c + 6
5536*a*b**8) + _t**4*(4096*a**2*b*c**2 - 2048*a*b**3*c + 256*b**5) + c, Lambda(_t, _t*log(x + (1048576*_t**7*a
**4*b*c**3 - 786432*_t**7*a**3*b**3*c**2 + 196608*_t**7*a**2*b**5*c - 16384*_t**7*a*b**7 - 512*_t**3*a**2*c**2
 + 384*_t**3*a*b**2*c - 64*_t**3*b**4)/c)))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{c x^{8} + b x^{4} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

integrate(x^2/(c*x^8 + b*x^4 + a), x)